Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Kirsop, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.038$
$w R$ factor $=0.056$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3,5-Tribromo-2,6-dihydroxybenzene

The title compound, $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3} \mathrm{O}_{2}$, possesses normal geometrical parameters. The crystal packing is controlled by bifurcated $\mathrm{O}-\mathrm{H} \cdots(\mathrm{Br}, \mathrm{Br})$ and $\mathrm{O}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{Br})$ hydrogen bonds and possible weak $\pi-\pi$ stacking interactions, resulting in a chiral structure containing a herring-bone-like motif of constituent molecules.

Comment

The title compound, 1,3,5-tribromo-2,6-dihydroxybenzene, (I) (Fig. 1) (also known as tribromoresorcinol), arose during our studies to determine the philicity of aryl radicals by competitive cyclization. (I) was first prepared by Davis \& Hill (1929), who also described earlier studies on this compound.

(I)

Compound (I) possesses normal geometrical parameters $\left[d_{\mathrm{av}}(\mathrm{C}-\mathrm{C})=1.389(7) \AA ; d_{\mathrm{av}}(\mathrm{C}-\mathrm{Br})=1.891(6) \AA\right]$ and, as expected, is essentially flat (for the non- H atoms, the r.m.s. deviation from the least-squares plane $=0.018 \AA$). As well as van der Waals forces, the crystal packing is controlled by bifurcated intra/intermolecular $\mathrm{O} 1-\mathrm{H} 1 \cdots\left(\mathrm{Br} 1, \mathrm{Br} 3^{\mathrm{i}}\right)$ and $\mathrm{O} 2-\mathrm{H} 2 \cdots\left(\mathrm{O} 1^{\mathrm{ii}}, \mathrm{Br} 3\right)$ hydrogen bonds (see Table 1 for symmetry codes). The donor-acceptor bond-angle sums about H 1 and H 2 are 356 and 357°, respectively. This results in infinite [001] chains of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3} \mathrm{O}_{2}$ molecules (Fig. 2). Starting from one molecule, the chain is generated by the $\left(\frac{3}{4}, 0, z\right) 2_{1}$ screw axis (compare Table 1). In the [100] direction, molecules in adjacent [001] chains are parallel and symmetry-equivalent atoms $\left[\right.$ e.g. C 1 and $\mathrm{C} 1{ }^{\text {iiii; }}$; symmetry codes: (iii) $x+1, y, z$ or $x-1, y, z]$ are separated by 4.107 (3) \AA, i.e. by the a-lattice translation. The closest inter-ring contacts include $\mathrm{C} 1 \cdots \mathrm{Br} 1^{\text {iii }}$ $\left[3.548\right.$ (6) \AA], $\mathrm{C} 2 \cdots \mathrm{C} 3^{\mathrm{i}}$ [3.569 (8) \AA], C1 $\cdots \mathrm{C} 4^{\mathrm{iii}}[3.532$ (8) $\AA]$,

Figure 1

View of (I) (50\% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius.

Received 12 December 2003
Accepted 8 January 2004
Online 17 January 2004

Figure 2
Detail of an [001] hydrogen-bonded chain in (I), with hydrogen bonds indicated by dashed lines. The symmetry codes are as in Table 1.

Figure 3
Unit-cell packing in (I), viewed down [100]. The dihedral angle between the mean planes of the molecules containing Br 1 and Br^{1} [symmetry code: (i) $\left.\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right]$ is $64.51(4)^{\circ}$.
and C5 . C6 $6^{\mathrm{iii}}[3.578$ (9) Å]. However, the displacement of the adjacent C1-C6 ring centroids, parallel to the ring planes, of $2.20 \AA$ suggests that any $\pi-\pi$ stacking effects are weak at best. In the b direction, the 2_{1} screw axis at $\left(x, \frac{1}{4}, \frac{1}{2}\right)$ and equivalent locations serves to generate (010) sheets in which the molecules in adjacent sheets are tilted by 64.51 (4) ${ }^{\circ}$ with respect to each other, resulting in a herringbone-like unit-cell packing, as shown in Fig. 3. This results in a rather short inter-sheet $\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\text {iv }}$ [symmetry code: (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$] contact of 3.5067 (9) \AA, some $0.19 \AA$ less than the $\mathrm{Br} \cdots \mathrm{Br}$ van der Waals radius sum of $3.70 \AA$ (Spek, 2003).

Experimental

To a stirred refluxing suspension of 1,3-dihydroxybenzene (11.0 g , $0.1 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(125 \mathrm{ml})$, bromine $(24.0 \mathrm{~g}, 0.3 \mathrm{~mol})$ was added dropwise over 1 h . The reaction mixture was refluxed for a further hour and then allowed to cool to room temperature. Activated charcoal (3 g) was then added and the mixture stirred for 30 min . The activated charcoal was removed by filtration and the solvent removed by rotary evaporation to give a pale-yellow powder ($21.2 \mathrm{~g}, 60 \%$). Thin-layer chromatography (1:1 ethyl acetate-hexane) showed 1,3,5-tribromo-2,4-dihydroxybenzene as a sharp spot at $R_{F}=0.4$. The crude product was purified by flash column chromatography to give (I) as a white powder ($18 \mathrm{~g}, 51 \%$). A sample of this powder was recrystallized from hot ethyl acetate to give fine white needles [m.p. 379-381 K; literature (Davis \& Hill, 1929) 384 K$].{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right), 5.92(2 \mathrm{H}$, $s, \mathrm{OH}), 7.58(1 \mathrm{H}, s, \mathrm{Ar}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}\right), 98.3,100.4,133.0$, 149.8. IR: ${ }_{\text {max }}\left(\mathrm{cm}^{-1}\right) 3072,1580,721$.

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3} \mathrm{O}_{2}$
$M_{r}=346.81$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.1071$ (3) \AA
$b=12.855$ (1) \AA
$c=15.296$ (1) \AA
$V=807.6(1) \AA^{3}$
$Z=4$
$D_{x}=2.853 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 12216 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=14.93 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Needle, colourless
$0.38 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.067, T_{\text {max }}=0.636$
7322 measured reflections
1820 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.056$
$S=1.00$
1820 reflections
107 parameters
H atoms treated by a mixture of independent and constrained refinement

1390 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-5 \rightarrow 5$
$k=-16 \rightarrow 16$
$l=-17 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0143 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.73 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.63 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0021(3) \\
& \text { Absolute structure: Flack }(1983), \\
& \quad 727 \text { Friedel pairs } \\
& \text { Flack parameter }=0.04(3)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	0.82 (5)	2.57 (6)	3.078 (4)	121 (5)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\text {i }}$	0.82 (5)	2.90 (6)	3.298 (4)	112 (5)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.77 (6)	2.52 (6)	3.229 (6)	153 (6)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Br} 3$	0.77 (6)	2.64 (6)	3.148 (4)	125 (6)

Symmetry codes: (i) $\frac{3}{2}-x,-y, z-\frac{1}{2}$; (ii) $\frac{3}{2}-x,-y, \frac{1}{2}+z$.
The $\mathrm{O}-\mathrm{H} H$ atoms $(\mathrm{H} 1$ and H 2$)$ were located in difference maps and their positions were freely refined. The H atom (H4) bonded to carbon was placed in a calculated position $[d(\mathrm{C}-\mathrm{H})=0.97 \AA$] and refined as riding. For all H atoms, the constraint $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom) was applied. The refined value of the Flack (1983) absolute structure parameter of 0.04 (3) indicates that (I) has a well defined chiral structure. Since the planar starting molecule is non-chiral, this chirality must result from a packing effect, and we assume that equal numbers of crystals of each enantiomorph arose upon crystallization.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $H K L$ DENZO and SCALEPACK (Otwinowski \& Minor, 1997) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank Alan Howie for invaluable advice and the EPSRC UK National Crystallography Service for the data collection.

organic papers

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Davis, T. L. \& Hill, J. W. (1929). J. Am. Chem. Soc. 51, 493-504.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

